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NOTES ON THE FOURDATIOi'?S OF T5E TBEORY OF SMALL 

DISPLA~SOFORTHCTROPIC SHEZM 

By F. B. Hildabrasd, E. Reissner, and G. B. Thomas 

A survey has been made of various systems of equations which have 
been given in the literature for-the analysis of small deflections of 
thin elastic shells. h this survey the results, previously tiown for 
isotropic shells, have been reformulated for shells which are orthotropic 
to the extent that the normal to the middle surface of the shell may be 
a preferred elastic axis. 
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A new system of equations has been derived for the analysis of 
shells, which includes the effects of transverse shear and normal 
stresses, The assumed orthotropy of the 'shell facilitates the 
identification of the separate effects of the ordinarily neglected 
tressverse stresses. 

IETRODUCTION 

In this report various methods 3re described of obtaining systems 
of equations which may be considered as forming the basis of a theory 
of small displacements of elastic plates and shslls. In dJ. cases 
on3 begins with the governing equations in the three-dimensional 
theory of elasticity and an attempt is made to reduce this system of 
equations, involving three independent space veriablee, to a new 
system involving only two space variables. These two variables are 
most conveniently taken as coordinates on the middle surface of the 
plate or shell. 

Numerous reductions of this sort hELve been carried out in the past 
by different workers in the field of elasticity. Care will be lxken to 
point out in the analysis the connection between the developments herein 
presented and the results of earlier studies. 

One of the points of interest is the study of the effect of 
transverse shear deformation on the bending of shells. In th3 case 
of the flat plate it has been shown, by methods which differ somewhat 
from those used here (references 1 and 2), that inclusion of this 
effect resolves in a natural way well-known difficulties with reSard 
to the boundary conditions which may be prescribed along the edges of 
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a plate. * Uris to be expected that correspording dffficultfes in the 
analysis of shells may be rtmoved in an analogous way, and the preesat - i . 
report--show8 that this 18 indeed-the case. The practical significance 
oPthi analyeis with refereIEe to stre88-concentration problems ha8 
been establiehed in the earlter work on plates. 

Attention 58 herein reetricted,to static problems involving small 
deformations, excludipg for the pre8ent the study~of vibrations,0 elastic 
stability, and finite deformations. It will be apparent, however, that 
much of the present.analy8is can be extended to the consideration of 
these problem8. 

In order that the separate effect8 of the traIWVer8e streeses may 
be segregated, the plates and shell8 are aesumed to consist of materi& 
which may be orthotropic to the extent that the norz& to the middle 
surface is a preferred, elastic axis. 

This work wa8 conducted at the Mssachnsette Institute of Technology 
under the 8ponsorshzLp and tith the financial assistance of the National . ' I 
Advisory CommLttee for Aeronautics. 

cgordinates in middle surface of ehell 

coordinate normal to tiddle BuTface 

unit Vector8 in direction8 of El, E,, c 

parameters in 1Mee.r element (equations (2) 
and (3)) -. 

principal radii of curvature 

di8phCemn-t vector ( n = Ulzl + U2;2 + Ea 1 

body-force vector ( ?? = F& + F2T2 + IF'& 

componsnts of ddrect strain 

component8 of sheari% El-train ” 

61, 02, q componsnts of direct stress I . 
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COmpOIIent8-:Of shearing 8tre88 

POi88On'8 ratios 

Young’s llloduli 

shear moduli 

pkrarneter defined by V = 

parameter defined by V* = L!sK 
(l-Vv)Ec 

parsmeter defined by z = '-' 
1 

-2 E --v-a/ 

potential energy 

strati energy per unit volume 

effective external force per unit area; 
applied to middle surface (5 = pl,l + p2z2 + qn -) 

effective external moment per unit area; 
applied to middle surface (i;; = m& - ml&r) 

etreas-resultant vector8 

( f, = NUT1 + N12T2 + QIE; N2 = N213 + N22T2 + Qs) 

stress-couple vectors 

( El =,M&- Muz2; % = M22%l - %x2) 

higher-order etre88 &eSI&kIntS defined by 
eq-tio= (73) 

auxiliary stress resultants defined by 
equations (79) 

displacement functions defined by 
equations (69) 

strain function8 defined by equation8 (841, 
'with appropriate SUb8Cript8 
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a0, as, a**. 

strain functions defined by equations (46) 
and (4&b), with appropriate 8ubscr1pts 

auxiliary paramstere defined by equations (86), 
with appopriate Bubscriptx! 

In this section there sre oollected for convenient reference 
certain larown basic formula8 psrtatiing to the analysie,of strese and 
strain in tsmm of orthogonal curvilinear coordinatss. 

TEE COCRDIXATE SYSTEM 

The position of any point in a plate or shell may be specified by 
three coordinates 51, 52,.5, where 51 and 52 specif'y position on 
the middle surface, while [ measures the distance, along the outward 
normal, from the middle eurface to the point. In order that the 
coordinate curves be orthogonal, it is required that the El- 
and f2+urve8 be the lines of curvature on the middle surface { = 0. 
The unit normal vector at a point of the middle Burface Is denoted 
by Ti and the unit tangent vectors to the El- and $-curves are 
denoted by 51 and F2, respectively. The coordinates k1 and k2 
are to be chosen in such a way that the 8ysbr.l is right-handed, in the 
8en8e that Fl is rotated into T2 by a rightGhandsd rotation 
about iii. 

If there is written for the position Vector to-&point in 8pace 

fi(41, t2r $ = F(Sl, "2) -I- E(El, 22) 

where F 18 the position vector to a point on the middle surface, the 
linear element ie of the form 

ds2 = 6-6 = Al2 dt12 + A22 dE22 + dc2 

The coefficients in the linssr element are given by 

Al S =a11+- ( > Rl 

A2 s 
=-+G ( > 1 

(1) 

(2) 

L ’ 
. 

(3) 
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where Rl and % are the principal radii of curvature of the middle 
surface and 

There is also the relation 

The further relations 

(5) 

(4) 

which me special case8 of formulas obtained by Mainardi and Codazzi, 
are of frequent use. It is noted, for later reference, that 
equations (6) imply the truth'of the equations 

COMPONEN?PS OF STFUB 

If the aisplacemnt vector v' is written in the form 

i! = ulzl + u2x2 + WE 

(6) 

(7) 

(8) 
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the six components of inf3nikmIm.l strain are expressed in terms of 
the components of 'B- by the equations 

,L44r "4%. (7) 
I 

“1 = .1 zliL 
-3 a1(l + S/$)aQ 

"2 =,*@ 

Yly, = 1 aw 
alp + @l) ag, 

+ l+ 
( 

725=*&+(1+ 

If the body &me per unit volume is denoted by the vectm 

F = Flzl + F2x2 -I- F$ 

(94 

(10) 

the SIX components of stress al, 62, at, 712, T& and 72~ muet satisfy 
the three equilibrium equations 

. . 
- 

- . . 

- t - 



NACA TN No. 1833 7 
. . 



NACA TN No. 1833 

STRESSS- RFLCITIOIVS 

If it is required that-the normal to the middle surface be an 
axis of elastic symmetiy and if isotropy is assumed in elements of 
the middle surface, the stress-strain equations may be written in 
the form 

712 = + 

-3g 
rig = Gt 

. 

T2g 
72g * s 

I 

If equations (12) are solved fay 61 and 62 the results can be 
expressed in the f'oxm 

E u1 = 
1 - v2 ( 

"1 + ve2 YE 
> + (1 - '>Eg cg 

E 
02 = 

( 
9 + ve1 

> 
+ 2iE 

1 - 9. (1 - V)Eg Og 

(12) 

03) 
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where 

(1 --Y)Eg 
If there are introduced the synibols 

'g E 
"*=i-- - v Eg 

E* = (1 - v23Eg 
1 

. c - 
- wgv* 

* - . equations (14) and (lka) may also be written in the form 

5 = 1 
E _ v2 

( 
"1 + tr62 

> 
+ v*cg 

"2 
E = 

1 _ V2 ( E2 + -1 > + *'Jg 

1 

9 

(14a) 

(151 L 

cc = 1 t*v2[6g + ""(El + c2)] J 

, 

An equivalent form of equations (14) and (lba), which is more 
convenient for some purposes, is obtaIned In terms of the parameters 

(16) 

(17) 
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With this notation equations (14) and (14a) lead to explicit 
expressions in terms of-the straina in the form 

E =1 = 1 _ y2 [(1 - T2Ll + (v + _;2>,, + vg(1 + vkg] 

iz =2 = l-V2 [ (1 -s>,, + (v +=v2)El + vg(l +V)Gg 1 I 
T =E5---;; c “f: EC 

(61+ "2)+ y 65 1 . 

It is noted that in the limiting orthotropic case for which 

vg = 0 

there follows ? = 0, E = E, and equatfons (18) and (19) become 

=1 = 1 
E 
w-v2 ( G1 + Ye2 > 

O2 = 1 
E 
--,g ( G2 + % 1 

Further, in the isotropic case for which 

Ec =E 

W 

(19) 

@d 

b-9) 

- , 

-1 I 
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there follows 

%sotropic = (1 + t,;l"- 24 E 

;isotropic = V 

and equations (18) and (19) become 

. - . 

\ - 

c 

5 = (1 + v&- 29) [ 
(l--v)e1 + V(E2 

a2 = (1 + V)Tl- 2V) c 
(1 -VIE2 + v(6; 

us = (l+ v&- 2V) II 
(l-vv)eg + v (El 

+6 
g)l 

+6 4 
+ "2 1 I 

RRINCm OF 
. 

\ 
Ill 

(23) 

(24) 

If no body forces are actTng and if all boundary conditions are 
stress conditions, the principle sets forth that among all possible 
states of strain the state which actually exists is that one for which 
the potential energy R takes on its minimum value. (See, for example, 

page 281.) 'IIhe potential energy sr2 of the load system is reference 3, 
given by the surface integral 

. 

. - where 5, is th& surface-Eltrese vector, while the energy netrain is 
I given by the volume integral 
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where P is the strain energy per tit-volume which is to be expressed 
in terms of the displacements Ul, U2J and W by us& of equations (9). 
The function P is determined by the relations 

Y 
ap,T 
a7, l2 

NACA TN No. 1833 

ap 
aE, = 02 

ap - = ig 
aeg 

LX. 
ar,g lg 

K-7 

ar2g 2g 

I 

and, foEthe orthotropic material conafdered here, takes the form 

C E 
l-V2 1 

(6 2 + E22 -I- 2ep2) + G712* 

+ lyv2E5 ,+ v*(% + c2)12 + Gg(7152 + 7,g (274 

Equation (27a) can also be written in the form 

The requirement that P be a positive definite quantity leads to 
the following restriction on the elastic constants 

Eg(l -v> - at2 > o PW 

.t . 

- . 
I 

- 0 . 

. 
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snd hence the restrictions 

13 

on the parameters 5 and V* or, 
that !? and IP be positive. 

equivalently, to the requirement 
With the definitions of equations (25a) 

and (25b), the minimal condition is of the form 

6n = * 5cZ + %train ( > = O 
L - i . 

TEEMJNIMCMPRINCIP~FORTHE STRESSES; CASI'IGLIANO'S TEEOFBM 

I 

. - 

. 

. - 

OF LEAST WORK 

(29) - 

If linear stress-strain relations and small strains are assumed, in 
accordance with equations (g), and if the surface stresses are prescribed 
over the faces of the shell or plate, while the displacements ere 
prescribed over the edge surfaces, the principle sets forth (see, for 
example, reference 3, page 286) that emong all statically correct states 
of stress the true state is determined by the condition that the 
complementary energy 'II~ be a-minimum 

kc = 0 (30) 

The complementery energy consists of two psrts: (1) The volume 
inte 

T 
al of the strain enerw, expressed in terms of the stresses, 

and 2) the work of the-boundsry stresses over that part of the 
surface over which the displacements are prescribed, 

J-cc = 
sss ( 

p 61, “29 cr 5’ 712, Tlg 9 Tfg > a-v - 

a’s 

p-5 ds (31) 
e ge 
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The function P ie determined by the relations 

and, for the matmial under consideration here, is of-the form 

NACA TN no. 1833 

(32) 

. . . 

(324 

STRESS HEmANTs Am corns 
I 

Equationa (91, (II), (131, (18),~and- (19) comprise 15 equatiorm 
involving the 15 unkmwn quantities Ul, U2, W; ~1, c2, EC, 7=, 7,~, 72~; 
=19 02, qt 7123 T1f.r 72{= These quantities here depend upon the three 
independent--apace variables El, k2, and (. 

For the purpose of obtaining a two-di+mHonal theory of plates 
and shells it is custm~~~y to eliminate the ~-coordfna.te in the 
expressions involving stresses by the Introduction of stress resultants 
and couples. Ten such quantities are conventionally defined., by the 
following equation: 

. 
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s 

h/2 

Nil = 
-h/2 

s 

h/2 
N12 = -h/2 32(1 + (4) elf 

s 

h/2 

Ql = 3g(l+ g4) a[ 
-h/2 

s 

h/2 

%2 = 7141 + m2)c a 

42 

s 

h/2 
N22 = 

-h/2 

Na = 

s 

h/2 
T12(14- m) d 

-h/2 

s 

h/2 

Q2= T& + g/Q ag 
-h/2 

s 

h/2 

Mu= 
-h/2 

7141 + 5/Q at 

15 

l (33) 

The significance of the 10 resultants and couples 80 defined is 
suggested by the laws of mechanics, irrespective of the material of the 
shell and irrespective of the state.of deformation of the elements of 
the shell. These resultants and couples can be considered a8 ths 
components of the vectors 

?fl.=*Nuxl + N12x2 + Ql'i; $I N213 + N22z2 + Q$ 1 

. l - 1-k is evident that these vectors represent reeultant force and 
moment, per unit of length along the parametric curves, acting on 
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sections El = Con&ant and 5, = Constant. The coupl?s are positive 
when they produce positive s-&ewes on the part of thk shell or plate 
on the positive side (f > 0) of the middle surface. The absence of a 
third component in Rl and T& is due to the fact that a differential 
element of area in a cross eection has finite height -h and infini- 
tea-1 width. 

To obtain differential equation8 of equilibrium for the resultants, 
the equilibrium equations (11) may be averaged over the t&icknees h of 
the plate or shell. &kfng uee of equations (7) where neceesary, the 
results are obtained in the form 

~.-~+N12+N22~+Ql=+~l~pl=0 
a% as2 2 -1 % 

%N12 %N22 
+ aE, 

h2 
+.. N21 at, 

aa, alC%Z 
a% 

- - Nn as2 + Q -q + ala2p2 = 0 (35) 

%Ql + %%z 
ae, at2 

where 

. , 

-1 . 

- I . 
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The qusntities pl, P2, and Q cm be considered as the components of 
a vector - 

B= PlTl + P252 + qz (37) 

representing effective external force per unit area applied to the middle 
surface of the plate or shell. 

Two differential equations of equilibrium for the couples are 
obtained by multiplying both sides of the first two of equations (ll) 
by !, and integrating over the thickness. It may be noted that if the 
third equation were treated in a isimilar way new quantities not defined 
by equations (33) would be introduced. The two equations described are 
obtained in the form 

where 

m7 = - A 

m2= (1 + $-)(I + &)02 a( [~~+F$)~+Q4:~2+ , 

(39) 

The quantities ml and m2 can be considered as the components of a 
vector 

m = m&l - Iqx2 (40) . 

representing effective external moment per unit area applied to the 
middle surface of the plate or shell. 
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Equations (35) and (38) compise 5 equation8 involving the 
lo resultants Eand couples defined-by equations (33). Two difff3ren-t 
points of view may now be adopted. 

In the first place, the 10 quentities defined by equations (33) 
my be considered as a collrplete end adequate macroscopic description 
of the statics of the plate-or shell. In this event, it becomes 
necessary to determine which quantities serve to provide a 
corresponding macroscopic description of the state of deformation 
of the plate or shell which Is logically equivalent to the'foregoing 
description of the state of-stf'8ss. By this is meant that in the 
deeoription of the state of deformation thsre should appear n0 
quantities whose values are sffeuted by stress distributions for 
which the 10 reeultants and couples have zero values. 

In the second place , quantities may be arbitrarily chosen to 
represent the state of deformtivn in the plate or shell. In this 
event, it may happen that the 10 resultants and moments defined by 
equations (33) are not sufficient to describe the corresponding 
state of stress, and additional quantities ("hi&r mmmds" of the 
stresses) may occur, together with corresponding additional equilibrium 
equations complementing equations (35) and (38). 

(41) 

It is evident that in various theories of plates and shells, 
developed along such lines, the final formulations may differ in 
consequence of-differences in basic assumptions. 

It is felt-that neither of the foregoing two points of view has 
heretofore been adequately taken into accounz-- In this report-a 
definite formulation of the theory with reference to the first point- 
of view is not obtained. However, results are arrived at which are 
believed to be definite with reference to the second aspect of ths 
general problem. 

CONV3ZNTIONAL ASS-UMETIONS 

It may be expected that a state of small bending end stretching 
of a plate or shell is described in the first approximation by the 
following formulas for the displacement components occurring in 
equations (8) and (9): 

- c . 

- I , 

. 

- . 

. 

. 
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The components of strati are determined in terms of the five displacement 
variable6 ul, ul*, ~2, u2*, and w by introducing equation (41) into .- . equation (9). Equations (ld, (18), and (19) then eerve to express the 
components of stress in terms of the displacement variables. If these 
results sre int%!uced.into equations (331, the resultant 10 equations, 
in aaditfon to the 5 equilibrium equations, comprise 15 equations 
involving the 10 resultants and couples and the 5 displacement vsriables. 

The success Of the CUStom%xy prOCedUre depend5 on the use of the 
following sxmnt. An orde~f-magnitude consideration of the 
equilibrium equations for the stresses shows that, unless the surface 
loads sre highly concentrated, the transverse normal stress 01; is in 
general of smaller order of magnituae than the stresses ol ard u2. 
k consequence of this fact it is COnVentlO& to nSgleCt the term 
involving err, in equations (14). 

The third of equations (ga) BhCWS that the assumption of equation (41) 
implies the assumption of tzr; = 0. However, a theory which includes the, 

. - . two hypotheses ar; = 0 and et= 0 wOuld; fn pszticular, fail to lead to 
correct results in the special caee of a flat plate subjected to a state 

\ l 

. 

of homogeneous bending and stretching, for which problem the exact 
BOlUtiOIl ie easily eBtabliSh8d. This diffictity i5 UBUW avoided by 
neglecting 6(; in the stress-strain relation of equation (14-a) and by 
then determining GI; from the resultant equation. To remove the 
resultant inconsistency, it would then be necesssry to correct the 
original expression for W by the aadition of terms which sre linear 
and quadratic in S. If no boundsry layers af width of the order of 
the thictiess h sre present, these addition&terms are found to be 
small in comparison with the leading term w. Thus, to obtain a first 
approximation theory the aaaitioIYt1 terms may be omitted in intro- 
dUCing W into the expressions for ths Strains G1, Ed, and 712. 

If the assumptions of equations (41) sze introduced into the laaf 
two of equations (gb) there follows 

7ll; = IL ,+13w u1 ---- 
1+ ala51 Rl 

(42) 

* . It has been customszy to assume further that the transverse shear 
stresses T1c ana T25 are also of smaller magnitude than ul, c2, 
and 7-12. If these stresses are neglected ln the stress-strain relations, 
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two of equatkms (13) become 71~ = 72~ = 0. With theee relationa, 
equations (42) determine the bending terms ul' and ~2' a8 functions 
of ul, u2, and w a8 follows: 

M . . . _ 

(43) 

It may be mentioned that the aesumptione GC = 7,~ = r2y, = 0 at 
all points are equivalent to requiring that Btraight lines which were 
0rigFnally normal'to the undeformed middle surface remain straight lines 
after deformation, remain normal to the deformed middle surface, end 
suffer no extension. 

With theBe stiplificatione, the expressions for Ql and Q2 In 
equations (33) can no longer be retained and there results a set of 
13 equations involving 13 unknown quantities, ul' and u2' being 
eliminated by mean8 of equations (43). 

If it is assumed that cc ie negligibly small, there are obtained 
from equations (13), (14), end (33) the following equations relating the 
B-tress resultants and couples to the components of strain: 

’ I I 
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s h/2 
E 

Nu=l-v2 
-h/2 )( > 

l+- t3 dc 
R2 

\ - . 

s h/2 ELl= Eg ( “1 +eg 
1 -V -h/2 

, 

c 

> 

s h/2 Mu =G c dc 

-h/2 . 

21 

(44a) 

(44b) 
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Equatione (44) a.r+lieted as a basis of an outltie of certain 
procedures which have been used to obtain relationa between the 
stress reBultante and couplee and the displacement variables u13 u2J 
and w. 

LOVE'S FIRST APPROXIMATION 

If-the ratio c/R is neglected in 
equatciom (441, aa W&l aa in equations 
components, the following stres-train 

comparison with unity- In 
(9) which define the strain 

I are obtained: relatiam 

N22 = 1 
Eh 
- ,2 ( “2 O +vq 0 > 

Nl, = N21 = m712O AC 

%l = 

%!2= 

32 = 

Eh3 
12(1 -v2) ( El + VQ > 

*@ + vKl) 

l+G& 1 J 

(4% 

(4%) 

- . , 

- I . 
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where 

K1=lau,t + 9’ % 
al as, ala2 as2 

. - . u1' &2 Re=LL2L+-- 
2 99 akl 

, - . 
f -a2 a ~2' 

( 1 ai asp2 
+2&g 

2 ( ) 
I 

c . 

. - 

and where ~1' and ~2' are defined by equations (43). 

(J+6) 

The system of equations (451, (46), (43), (35), and (38) was first 
given by Love (reference 4, page 531; see also reference 5) end has 
been used as the basis of many studies of specific problems with 
regsrd to flat plates, cylindrical shells, and shells of revolution. 
It is generally believed that this formulation of the problem 
contains all the essential facts necessary for the treatment of thin 
shells, as long as special conditions do not require inclusion of the 
effect of transverse shear and normal stresses. 

It is well tiown that within the framework of this approximate 
theory fewer boundary conditions can be satisfied than is expected. 
It has been shown in earlier papers (references 1 and 2) that for flat 
plates this difficulty is resolved if transverse shear deformation is 
taken into account in an appropriate way. In this report it will be 
shown that the same is true with regard to the analysis of shells. 

EDIFICATION OF LCVE'S F&ST APIIIOXIMATION 

A number of writers (references 6, 7, 8, and 9) have modified 
the foregoing first approximation by not neglecting the ratio f/R in 
compsrison with unity in equations (9) and (44) but still retaining the 
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assumptions of-equations (41) and (43). In particular, if t-erms 
involving powers of h through the third are retained, and terms 
involving higher powers of h are neglected, in-Bquations (44), 
equations (45) are replaced by the following forms (reference 9): 

- , 

., 
I 

N21 = m[~12°-@'~-+-@j)] 

Ml2 = Gqf - (&- @q-j - 

%l = qq-- ($-Q32°] , - 

In addition to the quantities defined in equations (46), the 
quantities j31° and P,O are defined by the equations 

1 m-22 u1 hl 
P1° = qq -- 

ala2 q 

a29 = .&L- u2 sol, 
2 am ati, I 

(47) 

(48d 

. 

. . 

. 

I 
w 

J 



NACA TN No. 1833 25 
. - 

end Kl2 is defined by the equation 

It is noted that the equation 

PI0 + 82’ = 7;~~ 

(4%) 

(49) 

' is satisfied by virtue of equations (@a) and the third of equations (46). 

It is seen that equations (47) differ from equations (45) in that 
certain terms of order h3 are added to the original expressions. 
However,' it may be said that the additional terms which appear in . _ . . equations (47) cannot be expected to be of the same form as terms of the 
same order of magnitude which would be introduced if the simplifying 

. - . 
assumptions or; = rlc = 725 = or; = 0 were replaced by more flexible 
asmtions. 

It may be noted that all the additional terms m equations (47) 
disappear when the principal radii of curvature of the middle surface 
are equal, that is, in the cases of flat plates and spherical shells. 

LOVE'S SECOND APFROXIMATION 

A second approximation, given by Love (reference 4, page 533), 
introduces three types of corrections to. his first formulation. Love 
states that such modifications are unnecessary unless the flexural 
strains 01, b2, and CT are large in comparison with the extensional 
strains 61°, E2’, ad. 712’. 

As a first modification, the transverse displacement W is 
expressed in a more flexible form, 

. 
W(L 52, 0 = w(%, %) + a(%, e2, s) 

. . 

1 
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accord- to which the direct strains, given by equations (ga), 
become 

"1 =+&C + 'V+&) 

E2 = 1 
1+ fjb2 ( 

659 + (9 + g 
> 

I 

'1 = "1 0 2 
+ r, - 

( 0 1 l$ 

( ) 
c2 E2 = E2O -I- (r - Rg It2 + 8 

1 

(49b) 

(w) 

. 

(494 

The second motification consists in not completely 
ratio c/R with respect to unity but writing 

1+W1 

neglect3ng the 
z 1 - c/+ 

However, in expanding the first two of equations (&a) Love assumes 
f 0 that the quantities z 6 t- 

-9 % can be neglected. In this way, 
equations (&a) are approximated In the form 

The term ? is considered as a small correction term. To obtain a 
first approxdmation to its value, the transverse no-1 strees UC 
is neglected fn equation (19) and s1 + ~2 is replaced by its first 

The result then becomes 

I . 

. 

. , 

. 

. . 

. 

. 
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The correction "w is then determined by integration, tith the 
'- 1 convention 5 521 0) = 0 Zn the form 

. - 

“wz- *[5&O + e2O) + & c2p1 + K2)] 

27 

(51) 

If this result is introduced into the first two of equations (kgb) ' 
t 0 snd quantities of the form B 8 ere again neglected, there follows 

( ‘El + tc2 
(52) 

The third modifiCatiOn COnSiStS in mt IW@eCtiIIg cc in 

equatfons (14). In order to obtain a first approxtition to the value 
of cc, the third of the equilibrium equations (ll) is used. It is 
supposed that no body force Fc is present and that the transverse 
shear stresses are negl%gible. 
ratios c/R 

Also, to this approximation the 
csn be neglected, and the equation becomes 

If 61 and 62 sre replaced by their first approximations and the 
extensional strains are neglected, then there follows 

80 
f = E a l-v 2$ ~l+vQ+&2+vKl [ )I 
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In the case of vanishing normal surface loads, 
Love obtains by integration 

If the expressions for 61 and ~2 obtained by introducing 
equations (52) and (53) into equations (14) are in turn introduced 
into the first two of equattons (33) and if again quantities of the 
form g 60 sre neglected, there follows finally 

(53) 

(54) 

- . 

, 
P. 

. . 
l 

together with an analogous expression for Nz. 

A comparison of-equations (54) with the first of equations (47) shows 
that equation (9.) includes the terms preeent in the former solution 

Cl0 except for the term - 
Rl 

which was negleuted in the present analysis. 

More important, however, is the fact that new terms, of the s&me order aa 
the correction terms present in equation (47), are introduced in 
equation (54) in consequence of the partial inclusim of the effect of 
the transverse normal stress UC. Furthermore, these terms do not 
vanish when RI = R2. ~23tiJ.l no account has been taken of the possible 
effect of the transverse shear stresses I-~(; ad 72f. - 

The expressions obtained, in the present procedme, for the 
remaining quantities listed in equations (471, are equivalent to the 

results of neglecting terms of the form Go z!, 
RJ and J$ in compsrison 

with the flexural terms in equations (47). That is, no additional 
terms due to the effect of crc are introduced into the remaining 
quantities by this procedure. -. 

. 

- . 
c 

. 
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'* . 
It may be mentioned that the results of the developments of this 

section reduce to those presented in Lovets treatise in the isotropic 
case 2 = V, EC = E, which is the only case treated there. 

BASSET'S THEORY 

In this section there is outlined an analysis given by Basset 
(reference 10) which, in the opinion of the present authors, has not 
received as much attention as it deserves. The reason for this may 
perhaps be found in the fact that Basset's work is difficult to read 
and that the notation employed is somewhat complicated and, from 
modern standards, somewhat unsystematic. 

Basset begins his analysis with the assumption that the stress, 
strain, and displacement components in a shell can be expanded in 
series of powers of f. Thus there may be written, for example, 

. 

. l 
l 

ul(rlJ E23 0 = Ul(ElJ 52) + W(51, !2) + ; C2ul" (51, t2)+ . . . (55) 

where 

"l(b1, b2) = Ul(51, t2, 0) 

- 1 
u+ e2) = ?I*- 

(56) 

and so forth. 

The derivation is based on the use of the principle of minimum 
potential energy (equations (25) to (28)). The stramnergy function P, 
as given by equation (271, is expanded in powers of c so that the first 
terms are of the form 

( 61 + &l' + z 1 f2 
2 

qtt + . . . 
> ( 

+ E2 + I;E2’ 

(57) 
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where 61 is written for 61 0 ; 81*, for > 
80 forth. Only such terms are retained a8 will lead to t&& of 
order h3 or lower after the f-dntepation of equation (2%) is 
carried out, term involving the basic quantities ul, u2, and w being 
considered as of zero order in h. 

To express the prImed quantities in term.8 of unprimed quantities, 
we ie made of the straitiisplacemnt relation of equations (gb), the 
last two of which can be written in the form 

au1 - = 7lC - 
a(; 

au2 
ar,= 72c - a+ 

u1 
Rl + c 

1 
% 

R2 + (; 
. (58) 

. . 

1 

. 

Thus, setting c = 0, there follows . 
. 

(59) 

In this way the quantities ul* and u2* are expressed in term of the 
displacement functions ul, ~2, and w on the middle mrface and in 
tern of the transverse shearing strains on the middle surface. The 
third of equations (ga) gives the result 

(GOa) 

This result can be expressed Fn a different form if equation (19) is 
used to expreee 

2 in term3 of el, G2, and 6~ a8 follows: 

. I 

(Mb) - 

By further ~-differentiation, all other prfmed quantFties can be 
expreseed in term ofthe values of ul, u2, w, and cl 

( +- E2) on the 
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middle surface; such expressions also involve the values of ylcr 7,$, 
and 0~ and their (54erivatives on the middle surface. The remaining 
three stres-train relations of equations (9) then permit the 
determination of the coefficients in the power-series expansions of 
the strains ~1, g2, and 7~ in terms of the same quantities. 

It is then assumed that in the expansion : 

the lesding term is at least of order h2 'and the coefficient of c 
is at least of order h. Next it is pointed out that the lesding 
terms in the expressions for the oouples Mll, s, &, and ql 
are at least of order h3. On the basis of this fact it is stated 
that, if the external moments ml and II+ are absent, the equilibrium 
equations (38) imply~that the trensverse sheer resultants Ql - QQ 
must be at least of order h3 and hence that the terms of lowest 

* order in the transverse shearing strains 715 and 7& must be at 
least quadratic functions of h and x since such functions when 
integrated over a section give rise to quantities of order h3. 

The fact may be pointed out here that this argument msy break 
down in those cases where an appreciable change in the magnitude of 
a couple may occur.over a distance of the order of magnitude of the 
thktiess h of the plate or shell or over a distance of order \r ah, 
where a is a representative dimension of the shell. For if such a 
change takes place over a distance 2 in the E14irection it follows 

that a +- 
is of the order '1 

a1 
7 M in the region considered. It is well 

Imown that for plates 2 may be of order h, while for cylindrical and 
spherical shells the distance may be of order v- ah, where a is the 
radius of the circles of curvature, in problems of usual occurrence. 

If such cases are excluded, it is found that the contributions 
of 7,~ and 7,~ to the strain-energy function of equation (57) give 
rise to terms of order h5 or higher and hence the transverse shear 
effect may be neglected if only terms of order h3 are to be retained. 

With the assum@ions noted, the variational equation (28) leads to 
evessions for the stress resultants and couples which include all 
third+rder corrections to Lovels first approximation, equations (45), 
which sre consistent with the assumed orde-fmtude relations 
j=olvf% 7lr;, 7& 6D.d at. In particulsr, the correct-lo& introduced 
by equations (47) are included, as well as the additional corrections 

_ 
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introduced by Love's second approximation, and the remaining third- 
order corrections which are absent in the latter approximation are 
introduced. 

Easset*s analysis was carried out only for isotropic circular 
cylindrical and spherioal,shells but could equally well be adapted to 
the more general theory. 

TRXFTTZ’ THEORY 

An alternate system of equations for small deflections of isotropic 
shells has been derived by E. tiefftz (reference ll) by mesns of the 
minimum principle for the stresses. Trefftz begins by writing 

Ul = u lo + Pl' 

a2 = u20 + p$ 

1 

712 = 7120 + fQ 1 

- . 

. . . 

where the functions u" and u' are expressed in terms of resultants 
and couples by mesns of equations (33). Equations (61) are introduced 
into expressions (30) and (32) for the complementery aiergy, in which 
all terms containing us, T~(, and 72c are omitted. 

61) 

. . 

The resultant--expression for the complementary energy expressed In 
terms of the N's and M's is minimized subject to the restrictions 
imposed by the five equilibrium equations (35) and (38). The equilibrium 
equations are taken into account by means of the Lagrangian multiplier 
method, the multipliers beFn@; identified with appropriate displacement 
components. 

When terms of order c/R are neglected, TYreffte' results agree 
with Love's first approximation as given by equations (45) and (46). 
When terms with f/R are retained a new system of equations is obtained. 

With regard to this set of equations, however, the following point 
may be made. For certain exact solutions for circular rings it is found 
that, as h/R increases, the linear displacement expressions corre- 
sponding to equations (41) sre rrmch more nearly correct than the linear 
stress -expressions corresponding to equations (61). It is noted, 
however, that this distinction disappesrs for the spec.ial case of the 
flat plate. 
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The effect of transverse shear and normal stress in shell theory 
might be taken into account by calculating by mesns of the three- 
dimensional equations of equilibrium (EL) the values of the stresses UC, 
5C' and T25 whichcorrespond to the values of u 1' O2' and T 
given by equations (61). 

12 as 

It appears that this procedure would lead to rather complicated 
expressions for uf, 71f, and 72t when R1 and R2 are finite. A 

class of nonhomogeneous shells for which this complication can be avoided 
has been studied in reference 12. 

In earlier papers (references 1 and 2) one of the present 
authors has treated the poblem of the flat plate in this manner and 
has thereby established the importance of the role which is played by 
the deformations caused by the stresses UC, TIC, and TV{ in certain 
problems of plate theory. It may be remarked that the use of the 
particular minimum principle employed in that reference is not essential 
to the analysis of the effects of transverse stresses. Similar results 
can be obtained in a number of ways, for example, as is shown in a later 
section of this report, by use of the minimun principle for the 
displacements. 

It may be added that the system of equations obtained by the 
application of the minimum principle for the stresses in the manner 
just outlined, while furnishing approximations for the stresses 
themselves, determines certain weighted averages (taken over the 
thickness) of the displacements, rather than the displacements themselves. 
This is shown in reference 2 with regard to flat plates. It will be 
shown in the present report that just the reverse is true when the 
minimum principle for the displacements is used to obtain a system of 
two-dimensional equations for the theory of shells. 

THEORY OF SYNGR AM> CE5N 

A theory of the finite deflections of isotropic shells has been 
developed in a series of recent papers by J. L.. Synge (reference 13) 
and W. C. Chien (references 13 and 14). The basis of this theory, 
which is of great generality, appesrs in the case of small deflections 
to reduce to the following considerations. 

All stresses and displacements are expressed as power series 
in { and the equilibrium equations and stress-strain relations are 
written accordingly as equalities between power series in c. By 
equating the coefficients of respective pavers of 5 in each of these 
equations, an infinite system of simultaneous differential equations 
in the independent variables 51 and 52 is obtained, I 
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Next a representative length a on the middle surface of the shell 
is introduced and each coefficient of each power series in c is 
considered to be developed in powers of the ratio ij = h/a. Veriows 
choices of the loweat exponent (which may be negative) of TJ are made, 
such choices leading to different formulations of shell theory. 

Fj.n&f&y, only the leading terma of the respective developments are 
retained. 

The fact must be stressed that this interpretation of the gynge- 
Chien procedure is tentative and that a more detailed explanation of 
this work in term.e of the notiona of the present report is believed to 
be desirable. It may be remarked that the formulation of boundary 
conditiona appropriate to the various theories evolved by this procedure 
doe8 not appear to be incorporated in the work of Synge and Chien. 

INCORPCBATION OF - .SHEAR AND NORMAL S~S EFFIECTS 

WITEOUTTJSE OFAMIKLMUMPRINCI~ 

Ln thie section there is outlined a possible extension of the 
claseical general methods which take8 into account a first approximation 
to the effects of transverse sheer and nom1 stresses. 

Again there are -Bumed for the displacements the expreasiona 

(62) 

It is not, however, asfnunsd that the transverse shear strains are 
negligible. Thus equations (43) no longer hold. In their place 
now there are the definitions of Q1 amI @ a8 given in equation8 (33). 
To a fir& approximation these equations take the form 
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. 

Ql=q 
h/2 Q!z=q s J Y2f dc 

-h/2 

where the factors 1 + c/% are replaced by unity. With the same 
approximations, eXpreSSiOn for 7lc and 72f sre obtained from 
equations (gb) in the form 

= 1 aw 
71{ -- al as1 2 -r:v 

1 . 

L 
J 

Thus, in place of equations (33) now there are the relations 

(63) 

W) 

(65) 
1 aw u2 %I u2’ +-- a2 at,-ii;'hGf 

J 

. 

. * 
w 

l . 

The next step consists in introduoing the values of el, ~2, 
and 712 which correspond to equations (41) into the first of 
equations (13) and into equations (lk), to determine corresponding 
expressions.for cl, 62, and 7, and in then substituting the results 
into equations (33); to determine corresponding expressions for the 
stress resultants and couples. In doing this, sgain the factors 1 + c/R 
sre replaced by unity in calculating terms which are in addition to 
those which appear in equations (47). If the right-hand members of 
equations (47) are denoted by Nn*, N22*, and so forth and the parameter 
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'* = (l- V)Ef 
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. . 

65) . -* 

which appears in equations (15) and (16) is used, the resultant 
equations take the form 

s h/2 N22 = N220 + v* ar; at- 

42 

wl2 = N120 

N2l = Nao 

s 

h/2 

MU = Mu0 +v* u$ df 

42 

(@a) 
- . 

I 

- * 
. 
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Equations (67) and (63), together with the.5 equilibrium equations (35) 
and (38), comprise 15 equations, involving a total of 17 mown quantities, 
llSJIU3Q: 10 stress resultants and couples, the 2 integrals involving 
in equations (67), and the 5 displacement variables of equations (62). 

at 

Two.additional equations may be obtained by requiring that the 
results of integrating equation (lg), snd the product of c and the 
two members of equation (lg), be .satisfied. Since the third assumption 
of equations (62) tiplies the vanishing of the transverse direct 
strain Et, these equations t&e the form 

. - 

. 
. 

I 

L t 

1 

. 
. 

. 
s h/2 

q dr; 
-E = V*E 4 --h/2 s h/2 

-h/2 

(68) 

s hj2 h/2 
u$ dc = v*E 3 

-h/2 s -h/2 

Equatiom (671, (a), ~ZM. (63) serve to determine the conventional 
10 stress resultants and couples, as well as the 2 auxiliary resultants, 
in terms of the 5 displacement functions. The introduction of these 
results into the five equilibrium equations (35) and (38) then leads 
to a set of five differential equations in the five displacement 
functions. The solution of the given set of equations is then apparently 
determinate if these five functions are prescribed along the boundary of 
the plate or shell. Alternatively, it msy be expected that along an 
edge El = Constant the five qusntities Nil, N12, Q, M,2, and Ql 
may be independently prescribed, as statical considerations would 
require. If th?s is indeed the case the classical difficulties first 
investigated by Kirchoff would be resolved. 

A new difficulty may, however, be noted. In the special case of 
pure bending of a flat plate, by couples distributed uniformly along 
the boundary, the known exact solution is derived from equations (671~) 
only if the corrective terms involving cc ere absent, that is, 
if Mll=MUo and M22=M220. But if equations (68) are to be 
satisfied it is readily verified that the corrective terms will be 
absent only in the special. case when the prescribed uniform edge 
couples satisfy the relation MJ-J + M22 = 0. The presence of this 
difficulty may be explained as follows. The assumption W = 
implies the assumption or; 

w(s19 52) 
= 0, and hence (if the relevant stress- 

strain relation is retained) there follows also 
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Thus a transverse normal stress effect is automatically introduced, 
in this formulation, in connection with effects due to the 
strese u1 + “2. This~ coupling is avoided- !n the-.c&ssical theory by 
disregsrding the third stress-strain relation andtaking UC = 0 

- identically, even though this in general contradicts the 
assumption ~1: = 0 which is also s-t of the classical theory. A 
similar procedure might be adopted here, wherein equations (68) would 
be disregarded and an expression for 66 such as that used by Iove 
(equation (53)) in his second approximation would be used. The validity 
of such a procedure would, however, be open to question. 

It is cl&r that the difficulty is not present in the special 
orthotropic case when vr; is negligibly small. 

A second possible procedure consists in replacing the 
aw 

assmption aS = 0 by a more general type of assumption under which or, 

and cr are not so restricted. In this connection, however, it may 
be remarked thatif the assumptions of equations (62) were replaced 
by more flexible assumptions, in which more than five displacement 
functions were involved, the present procedure would not supply in a 
rational way the additional relations needed for the determination of 
the additional functions. 

To clarify the entire situation and, in particular, to investigate 
in a rational way the mEulller in which boundary conditions may be . 
imposed, the formulation of the problem is considered next from the 
point of view of the principle of minimum potential energy. 

AWLIC~ION 03 T3E PRINCE OF JEWIMUM PorlIEaTm BENERa 

In slate of the assumptions of equations (62), here the following 
more flexible forms are taken: 

Ul(klr 629 c) = ul(Elt e,> + W(~l, 52) + $ ~2u11~(%J 52) 1 

. 
C 

. . 

. . 
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and a system of equations determining the nine displacement functions 
-- . present is derived by an application of the principle of minimum 

potential energy (equations (25) to (28)). 

A shell is considered whose boundsry edges lie &I coordinate 
surfaces El = Constant and 52 = Constant, and there is first 
calculated the potential energy ~2 associated with the load system. 
According to equations (25a), 

. - 
. 

. . 

I 

. 

The first (double) 
the surface loads 
the t3-mhce i0aaf3 

The abbreviations 

and 

“2 = - ss[ ( PI+%+ + p2+u2+ +y+)(l+&)(l+& _ 

+ ( qJ& + p*QL + cJ-$ -&)(j -de&Y2 at1 dC2 

-sl 

h/2 

( 
anun + T&t + Tnr;W 

)( )] 
1 + JL Gct,dh 

--h/2 
Rt, 

E 3tls + 7rze (70) 

integral 7c2s represents the energy associated with 

p1+ 3 p2+9 s.nd q, acting on the surface c = k and 

~1,9 p2-9 and q- acting on the surface f = - $. 

%+ = Ul 
( 
51, 52, + $ 

> Ul, = Ul ( 51, $2.9 - 5 > 

so forth have been introduced. The second intepal 7c2e in 
_ _ 

equation (70) represents the energy assoc+ated with the edge stresses. 
Here the subscripts n and t refer to the normal and tangential 
directions on the boundary faces; thus, on a face 5, = Constant, 
n = 1, t = 2. 

If the assumptions of equations (69) are introduced into the 
expression for xzs the coefficients of the displacement functions 
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are found to involve quantities which may be denoted as follows: 
. .- 

p1 = pl+(l + &)(l + &) + P&(1 - &)(l -s&) 

p2 = P2+(l + &)(l + &) + Ps@ -T&)(1 9%) 

1 q = 4f(l +.&gt,+&-)+ c+-$J(l~&-) 

With these abbreviations, there follows 

a-C28 = - m plul tp2u2 + qw +- rulul* + m2u.2' + nw* 
- 

+ i h2plullt + ; h2p&' + 8 L h2qw" 
> %a2 d% dk2 

(7d 

(71b > 

(72) 

where the integration is t&en over the area of the middle surface of 
the plate or shell. 

If the assumptions of equation (69) are introduced into the 
expression for f12e and if the {-integration is carried out, the 
coefficients of the displacement functions involve quantities which may 
be denoted as follows: 

. . 

I 

- , . 

1 

. . 

I 



. . 
I 

. 

1 

L 

: . 

. 

h/2 %= s s h/2 %lt = 
-h/2 -h/2 s h/2 

42 

s 

h/2 

s 

h/2 

%m= G= 

42 42 s 

h/2 
af 

42 

Pm=+ 

s 

h/2 h/2 h/2 
c2ac Pnt =* {ed T,=; Pa! 

-h/2 s 42 s 42 

Of the 18 "resultants" 80 defined., correspording to edgOB 51 = Constant and E2 = Coldant, it b 
men that 10 are the familiar stress remlTxmts and couples of equations (331, while the remaining 
8 quantities are new. 

With the notation of equationa (73), there follows 

"le o - 
f ( 

B ms + -&.$I$ t F&q' + -IttUt + -&l&t' + Yntllt" + -kW + -T&W’ + l&W’* 
> q dEt (74) 

where the 1Lne titegral 3.6 taken along the coordinate curves which form the complete boundmy of the 
J.nCWLe surface. The fact that edge values of the reeultantcl are involved In equatlone (74) Is 
indicated ky the me of bars. \ 
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The internal energy fiBtrain is given by the volume integral 

(75) 

where P represents the strain energy per unitvolume and is defined by 
equation (27). Thus, the variational principle of equation (28) is of the 
fixrm 

Gnstrain + 6n2~ + 6rr2e 3 O (76) 

where 

Wtrain = 

If-use is made of equations (26), the expression for BP can be 
put in the form 

where the stress and strain components are to be considered as functions 
of the nine displacement TunctionPr appearing in equations (69). 

First there is calculated the contribution of the first term ~~16~1 
to the variation kstrain. If the assumptions ofequations (69) me 
introduced into the first of equations (ga), there is obtained 

. . 
m 

. .- 

. 
. 

. . 

. 

I 
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. 

. 

m 

. . 

. 

a 
+ !A 

2 tt 
1 

w+Sw~+~~w )I 
Thus, the result of replacing 6P by CT~~E~ in the right-hand member of 
equation ('77) is of the form 

&l 
+q ( au2 a1F2 + hlg’ + 5 5%p) -I- - 

Pl ( SW + hw' 

+ 3 r;%wt* 

)I I 

dc de1 de2 

E the c-integration is carried out end the notation of equations (73) is 
introduced, this expression takes the form 

aiw 6wft 
',2*'+ -Xi de1 de, 

where the integration is taken 
shell. 

over the middle surface of the plate or . 

The contributions of the remaining terms in equation (78) to the 
value of &rBtrain can be calculated in a similar way. In calculating 
the contribution of the term Tl26712 it is convenient to make u8e of 
the identities of equations (7). 

c 
. 



44 NACA TN No. 1833 

The contribution of the term u~k~ involves two new "resultants,' 
not defined by equations (73), for which the following notations are 
adopted: 

s h/2 
A= 

42 
T(1 + i&)(1 + &) dc 

h/2 

B= 

s -h/2 
i 

(79) 

In the resultant expression for &cBtrain the terms involving 
derivatives of the independent veziations my be integrated by parts, 
this procedure leading to en eqUiVL&3njJ expreesion.for &cstrain 
consisting of the sum of-a line integral taken around the boundary of the 
middle surface and a new double integral involving the independent 
variations in a linear way. 

Details of the calculation are omltted, and only the form is 
presented that-is assumed by equation (76) when the sepsrate integrals 
are cotiined and the coefficients of the independent-variations are 
collected: 
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Since the variations appearing in this equation are entirely 
arbitrary in the interior of the middle surface, the coefficients of 
the nine variations in the double integral must each vanish identically. 
In this way nine differential equations are obtained the first five of 
which ere the conventional equilibrium equations (353 and (38), except 
for the interpretation of the loading terms, and the last four of which 
are new. These additional equations correspond to the introduction of 
the four new displacement functions w', w**, ul**, and I+**. 

The corresponding nine boundary conditions to be prescribed along 
the edges of the plate or shell ere obtained as a consequence ofthe 
independent vanishing of the nine terms in the line integral of 
equations (80). Thus, along a boundary !!l = Constant, the first term 
of the'line integral becomes 

( %l - %l) % l 
The vanishing of this term 

is assured if the displacement ul = Ul(El, k2, 0) is prescribed along 
this bkndery, since then 6111 = 0. Alternatively, the term will vanish 
if the resultant N-JJ. is required to take on a prescribed value El1 
along this boundary. Considering the other tern in the mm way, it iril 
seen that-the following nine boundary conditions along a boundary Cl = C 
are consistent with the displacement assumptions of equations (69): 

Nu =iin 

N12 = %2 

Ql = % 

Ml1 = i!= 

Ml2 = &I 

s1 =-El .. 

Tl = Fl 

PI1 = p11 

P12 = & 

or 

or 

or 

or 

or 

or 

or 

or 

or 

Ul = Ul(C, Se, 0) 

u2 = U2(C, c2, 0) 

w = w(c, t,, 0) 

l.q = WC, 5% 0) 
ar, 

u$ = au2(c, t2, 0) 
a!, 

w' = aw P, 52, 0) 
af 

wtt = a+(% 52, 0) 
ati2 

t1 _ a% (c, Q', 0) Ul - at2 
u2” = 

a2U2(U, 62, 0) 
a52 

prescribed 

prescribed 

prescribed 

pr8BCrib8d 

8) 

: 

033-a 

prescribed 
d 

prescribed 

prescribed 
f81b) 

prescribed 

prescribed 
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In particulBr, it is seen that if w' = w" = Ul" = U2" = 0 
'- I everywhere, and hence equations (69) sre specialized to the classical 

assumptions of equations (41), the five boundary conditions which remain 
are those of equations (81a). Thus, for exsmple, at a free edge of a 
plate the twisting couple Ml2 and the she8ring force q can be 
required to vanish independently. These results sre in contrast with 
the corresponding situation in the classical theory, where Kirchoff 
first showed that for a flat plate the physically desirable 
conditions %2 = Ql = 0 at a free edge cannot both be satisfied but 

a%2 0 that they must be replaced by the single .condition % + - = 
a52 

. 

Basset, Lamb, and others have since shown that in the classical theory 
the resultants Nl2, Mu, and Ql cannot in general be separately 
prescribed along sn edge of a shell. (See reference 4, pp. 536 and 537.) 

. * 
. 

The next step in the enalysis consists in expressing the resultants 
of equations (73) and (79) in terms of the nine displacement functions. 
The expressions for the relevant stress components ere obtained by first 
introducting equations (69) into equations (9) to determine the strain 
components and then substituting those results into the stress--strain 
rektions of equations (13) and (18). The remainder Of the 3xkLyBiB 
consists basically in introducing the expressions for the resultants 
into the equations obtained by setting the nine bracketed expressions 
in equation (80).equa1 to zero and so obtaining nine differential 
equations in the nine displacement functions. 31 practice, however, 
the latter pert of the analysis may frequently be cEt?I?ied out more 
conveniently in terms of some other appropriate set of nine independent 
qUalltiti88. 

Explicit expressions for the "awciliery resultants" A and B 
of equations (79), which do not enter into the boundary conditions, may 
be listed as follows: 

+ N22 + R ~+~)+Egh[(l+&~)w' +g(+++-)wj 

(82) 

In obtaining these expressions, uf33 was made of the third of 
equations (12) to express us in terms of (01 + u2) snd eJj. 
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By introducing equations (69) into equations (9) exp33ssions are 
obtained for the strain components which may be written in the fmm 

. . . 

. : 

62 = 1 
1+m2 ( 9 + (“2’ + $ &p 

) 

Y = y’ +- [w” 

712 = 
1 

1 +s& ( 
alo + SB1' + $2Bl'Q + 1 +lSb2 t2” + 582’ -I- $ 5%$ 

I 

where the relevant function are defined by the equations 

Gl 0=.i4-au 
t al a 1 +&s$+g 

1 

* (83) 

. 

. 

(84d 
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. 

@W 

(84~) 

and by the additional equations obta3ned by permuting the subscripts 1 
and 2 in equations (84). 

The calculatTon of the resultants involves integrals for wF@ch 
there are introduced the following notations 
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s h/2 
-h/2 

-h/2 

-h/2 

together with the analogous expressions obtained by permutation of 
subscripts. The parameters introduced in equations (85) possess the 
following expansions in powers of h: 

a1 
0 =1+q&~+~@$t$@$+. . . 

al' =l+@-~+@--+&($$~. . . 

altt =l+;(&J+&(&y +&(&$ +-. ; . 

. l 
. 

. .* 

. . 
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With the notation of equations (84) amI (%), the expreesiom for 
the resultants defTned by equations (73) can be written as follows: 

+ (v +T*)Q + vc(l+ v)w' 1 

b 
. 3h2 

l + - 4OR1 

&3 M11 = 12(1 - v2> Cr (1 - T%l’ + (v + v2),2t + vc(l + v)(w" + F&J 

- (I - &)(I -T2)[aloelo - g alr($ - $ 61" 

)]I- 
. 

. 

l l 

* 

. 
. 
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31 = 
&3 

24 (1 - V2) 
P)GlO +--(v + iqs2° + V$ + V)wj 

. . -.. 

+[ 
h2 (1 - V2)6 + 0 1 ff .+ (v + @)E2V’ + 2yl + qu” 

R2 1 

The expresstone for the.tine remainin@; re8ultant.s axft.obtained by 
permutation of subscrigk. 

1-833 

- (87~) 

- . 

. . 
l 

The results listed in equations (87~1) reduce to those of equat-lons (47) 
if wr = ~1" = ~2” = wl* = 0, if ul' and ~2' are determined from 
equations (43), if Vc = 0, and &en if terr& involvJngpover8 of h 
greater than three are neglected. 

In this connection it is usef'ul to write the expreBs1on.e 
for 31, $1, and Ql in the following titernative forms: 

. 

l . 

. 

. 
. 
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+ v* q ( ( w’ + G 2 wtt l2q +v* ) cc 610 + 6*0> + $g(q” + E2’r) 

+ (* - &Jij$~“(i - 619 + & al’61” 
81 

. - 
. 

. 
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. 
. * 

Eh 
FL1 = 12(1' v*> 

I- 
- ($ T +.)~lo610 - $$ alr(i - $ El" #)I 

Pll = 
Eh3 O 

24(1- V2) 
+ “E2 

+ (=& - +J$$[alr(I - ~~3 + s al'* Eltt 
I 

+ v*f(fwl +ggg) + v*{(5Q + E20) +&1” .f E29 
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where 

C- 
I 

1 

l ,- 

VIE 
v* = (14)q 

Es = (1 - v2)Ec 
I- 2VcY* 

I 

(89) 

The coefficients of y* in equations (88) repesent the 
contributions of-the transverse nor%& stress and are zero 
when OS vanishes. 2 In accordance with the remarks made in the 
preceding section, it is evident that if the effects of the transverse 
normal stress are to be taken into account in a reasonably accurate 
way, the terms w' and w'* must not be excluded, in general, unless 
the orthotrophy is such that ~'r; is negligibly small. 

It appears, however, that the contributions of the terms ul** 
and ~2" are in general of small importance. In fact, it is seen 
that these terms appear~incipally in combInation.8 of the 

h2 form UlO + 24 Ill" h2 and ug” + x 9” , such combinations representing 

the average values of the assumed displaoements Ul and U2 over the 
thictiess. Thus, it appears that-neglect of the terms ul** and up 
can be largely compensated by interpreting the terms ulo and u20 
as average values rather than as values assumed at the middle surface. 
The equations hereti listed afford the basis of a more detailed 
investigation-of the importance of the terms ul'* and u2”. 

If these terms are neglected there remain seven displacement 
functions snd, consequently, seven boundary conditions are to be 
satisfied along an edge of the plate- or shell. Thus two conditions 
in addition to the usual five conditiona suggested by statics are to 
be imposed. Ln particular, if the boundary conditions involve the 
stresses, the two additional conditions prescribe the integrated first 
and second moments S and T of the edge transverse shearing stresses, 
in addition to the transverse shear resultant Q. If the terms u1** 
and IQ!” are also retained, the second moments of the edge normal. and 
sheez stresses in the direction of the middle surface are also to be 
prescribed. 

It is of some interest to investigate in what way the number of 
boundary conditions is reduced when the effect of transverse shear is 

. 

. . 

L 

, 
I 
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neglected by taking Gc = Q). Reference to equations (87) then shows that 
in order that the resultants Q, S, and T remain finite there must be . 
taken 

Y 

. 

pp = pl’ = pl” = 0 

and hence, in accordance with equations (@tc), there must follow 

u2’ =-- u2 6% R2 
1 

and also 

The nature of the relevant boundmy conditions is determined by 
considering the form assumed by the variation of the expression 5[2e 
which represents the energy associated with the edge loads. If use 
is made of equations (74) and (gla), this variaWon becomes 

h asw + iQ.lt + -T&t Jb sUt - cGt g- 
( 

- Ip aswr 
Rt t > at nt art 

+ Q&w + s$w’ + T&w” 1 ctt a 

(90) 

(914 
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The terms involving tangential differentiation 
parts to give the result -I 
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can be integrated by 

,I$ considering the results of the application of the principle of 
minImum potential energy, it is concluded that either the quantities 
whose variations appear in equation (92) must be prescribed or the 
quantities which appear as their coefficients must be prescribed edge 
values of relevant resultants. Thus, in psrticular, if transverse 
shear effects are neglected, the three resultants %l~ Nnts md %t 
cannot in general be sepsrately prescribed at a boundary, but only 
"effective" shesr resultants of the form 

kit = N,t- 

T&p,,+ 

(93) 

can be specified. This result is in accordance with lmown facts first 
established by Kirchoff forthe flat plate and by Basset (reference 10) 
for the circular cylindrical and spherical shell. 

COJELUDING REMARKS 

(92) 

From a survey of various systems of equations given in the literature 
for the snalysis of small deflections of? thin elastic shells, it appears 
that the question concetingthe best form of the basic system of 
equations of shell theory has not yet been decided, even in the small- 
deflection theory. 

’ 4 

, 

. 
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-L ' 
The present authors believe that their approach by way of the 

principle of min3mum potential energy represents definite progress 
for the follo%ing reasons: (1) It is now possible to have a succession 
of two-dimensional theories of varying desees of exactness, depending 
on the number of terms which are retained in the series of the 
displacement components and (2) the equations which are obtained'include 
the possibility of analyzing boundsry-layer effects not only when the 
boundsry layer is of order m but al so when the boundary layer is of 
order h, where R is the radius of curvature and h Is the thickness. 

Massachusetts kstitute of Technology 
Cambrfdge, Mass., June 23, 1947 
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